Pointwise error bounds for orthogonal cardinal spline approximation

نویسنده

  • Sven Ehrich
چکیده

For orthogonal cardinal spline approximation, closed form expressions of the reproducing kernel and the Peano kernels in terms of exponential splines are proved. Concrete and sharp pointwise error bounds are deduced for low degree splines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H1-norm Error Bounds for Piecewise Hermite Bicubic Orthogonal Spline Collocation Schemes for Elliptic Boundary Value Problems

Two piecewise Hermite bicubic orthogonal spline collocation schemes are considered for the approximate solution of elliptic, self-adjoint, nonhomogeneous Dirichlet boundary value problems on rectangles. In the rst scheme, the nonhomogeneous Dirichlet boundary condition is approximated by means of the piecewise Hermite cubic interpolant, while the piecewise cubic interpolant at the boundary Gaus...

متن کامل

Pointwise Error Estimates for Relaxation Approximations to Conservation Laws

We obtain sharp pointwise error estimates for relaxation approximation to scalar conservation laws with piecewise smooth solutions. We first prove that the first-order partial derivatives for the perturbation solutions are uniformly upper bounded (the so-called Lip+ stability). A one-sided interpolation inequality between classical L1 error estimates and Lip+ stability bounds enables us to conv...

متن کامل

Uniform error bounds for smoothing splines

Almost sure bounds are established on the uniform error of smoothing spline estimators in nonparametric regression with random designs. Some results of Einmahl and Mason (2005) are used to derive uniform error bounds for the approximation of the spline smoother by an “equivalent” reproducing kernel regression estimator, as well as for proving uniform error bounds on the reproducing kernel regre...

متن کامل

A Cardinal Spline Approach to Wavelets

While it is well known that the mth order 5-spline Nm(x) with integer knots generates a multiresolution analysis, • • • C V_x c V0 C • ■ • , with the with order of approximation, we prove that i//(x) := Ú1mJ¡{2x 1), where L2m(x) denotes the (2m)th order fundamental cardinal interpolatory spline, generates the orthogonal complementary wavelet spaces Wk . Note that for m = 1 , when the ß-spline N...

متن کامل

Polynomial Approximations of Functions with Endpoint Singularities and Product Integration Formulas

Several problems of mathematical physics lead to Fredholm integral equations of the second kind where the kernels are either weakly or strongly singular and the known terms are smooth. These equations have solutions which are smooth in the whole interval of integration except at the endpoints where they have mild singularities. In this paper we derive new pointwise and uniform polynomial approx...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2002